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Abstract This paper is concerned with the estimation of the effective thermal con-
ductivity of a transversely isotropic two phase composite. We describe the general
construction of the Hashin–Shtrikman bounds from first principles in the conductiv-
ity setting. Of specific interest in composite design is the fact that the shape of the
inclusions and their distribution can be specified independently. This case covers a
multitude of composites used in applications by taking various limits of the spheroid
aspect ratio, including both layered media and unidirectional composites. Furthermore
the expressions derived are equally valid for a number of other effective properties
due to the fact that Laplace’s equation governs a significant range of applications, e.g.
electrical conductivity and permittivity, magnetic permeability and many more. We
illustrate the implementation of the scheme with several examples.

Keywords Hashin–Shtrikman bounds · Conductivity · Transport problem · Hill
tensor

Mathematics Subject Classification 74Q20 · 74Q15

1 Introduction

The determination of effective physical properties of heterogeneous materials obtained
by mixing different phases, usually on a very small scale denoted by η > 0 is a widely
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studied problem in the physical sciences. Motivation comes from a number of areas,
e.g. prediction of the overall behavior of ceramics or superconducting fibre-reinforced
materials. Predicting exact fields is difficult due to the size of the microstructure. It
could also be argued that such a precise solution is unnecessary if one is only interested
in overall behaviour on the macroscale. A number of different techniques have been
devised to determine effective properties. One such method is asymptotic homoge-
nization theory, which involves taking the limit η → 0, providing a homogenized
governing boundary value problem with constant coefficients, see e.g. Tartar [1,2] for
the N -dimensional case, or in a two dimensional setting by Lurie and Cherkaev [3].

In addition to this approach, there is also the so-called micromechanics community,
who are often concerned with determining approximations and bounds on effective
properties. This information is often very useful from a practical viewpoint. Bounds
are determined via variational principles and have been studied extensively by many
authors, e.g. [4–8]. The quasi-static transport problem (e.g. electrical and thermal
conductivity, etc) is of great interest in many applications. In the conductivity setting,
the Maxwell principle for the conductivity of a host material containing a suspension
of spheres, is very well-known [9]. When the only information known regarding the
microstructure is the volume fraction φr and the conductivity tensor Kr (with Carte-
sian components K r

i j ) associated with the r th phase, r = 0, 1, . . . , n, the effective
conductivity tensor K∗ associated with an arbitrary medium (isotropic or anisotropic)
can be estimated by the Wiener bounds for the transport problem [10], as follows

K −
i j ≤ K ∗

i j ≤ K +
i j , (K −)−1

i j =
n∑

r=0

φr (K r )−1
i j , K +

i j =
n∑

r=0

φr K r
i j .

where K −1
i j denotes the inverse of the tensor K.

The Wiener bounds depend only on the phase volume fraction (and phase material
properties) but are independent of any other characteristics of the microstructure.
Therefore, generally they are too far apart to be of any predictive interest except at
either very low or very high volume fractions, where other methods can be of great
use in any case. Using a variational principle and incorporating first order statistical
information such as the correlation function (note that volume fraction is usually known
as zeroth order statistical information), better bounds were obtained by Hashin and
Shtrikman [4], who provided the tightest possible range of variation for the property
under study, knowing only volume fraction and macroscopic anisotropy. In the case of
a statistically isotropic two-phase composite (K r

i j = κrδi j , r = 0, 1 where δi j denotes
the second order identity tensor), the Hashin–Shtrikman (HS) bounds for the effective
thermal conductivity K ∗

i j = κ∗δi j (κ−∗ ≤ κ∗ ≤ κ+∗ ) are given by

κ−∗ = κ0κ1 + 2κ0(κ0φ1 + κ1φ0)

2κ0 + κ0φ0 + κ1φ1
, κ+∗ = κ0κ1 + 2κ1(κ0φ1 + κ1φ0)

2κ1 + κ1φ1 + κ0φ0
.

Derivations of the HS bounds have been improved and revised by many authors since
they were originally devised [5,6]. In particular by introducing a comparison material
and incorporating additional microstructural information represented by a two-point
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correlation function, Ponte Castañeda and Willis [7] derived a more general expression
for the bounds that depends on the distribution of the inclusions as well as their shape
but focussed on the case of elastostatics and also always chose the comparison phase
as the host medium so that approximations rather than bounds arise.

In general, bounds that appear in the literature are almost always merely “stated”
(not derived) and it is often unclear how to construct them when the material is not
of simple type (e.g. isotropic spheres inside an isotropic host phase). Furthermore,
discussion of how the distribution tensor affects the Hashin Shtrikman bounds for the
transport problem does not appear to have been studied in any detail, in contrast to
elastostatics where some studies have taken place [7]. For this reason, the objective
of this work is to illustrate a direct way of constructing the HS bounds for the thermal
conductivity of transversely isotropic (TI) composites from first principles incorporat-
ing information about the, perhaps non-isotropic, distributions of inclusions. That is,
given the phase volume fractions and thermal conductivity, the shapes of the inclusion
phases and their spatial distribution, we construct a procedure by which the HS bounds
can be obtained in a straightforward manner defining the correct tensor basis set and
the appropriate expressions for the Hill tensors. In particular in this respect, assum-
ing homogeneous temperature conditions in the far field and by using the associated
Green’s tensor, we exploit the uniformity of the Hill tensor and the known explicit
expressions for spheroidal inclusions and distributions. This formulation should be of
a great utility for engineers and material scientists who may wish to construct these
kinds of expressions for a variety of such media.

The paper is organized as follows. In Sect. 2 we introduce the basic formulation of
the two-phase problem. Following this, in order to obtain explicit expressions for the
tensors that appear in the general scheme, we make use of the so-called single inclu-
sion problem related to the Eshelby conjecture regarding isolated inclusions. Then, in
Sect. 4 we describe the general formulation of the HS bounds, initially for the general
multiphase case before restricting attention to two phases. We specialize in Sect. 5
to the case of macroscopically TI materials. This specialization therefore motivates
the definition of a TI second order tensor basis set. In Sect. 6 we illustrate the imple-
mentation of the construction with some examples where we analyze the influence
on the effective conductivity of the different characteristics of the microstructure. We
conclude in Sect. 7.

2 Context of the problem

Consider a two-phase composite material occupying a domain Ω ⊂ R
3. The macro-

scopic behaviour of the composite is strongly influenced by the geometric arrange-
ment of the host phase Ω0 and the inclusion phase Ω1 satisfying Ω0 ∪ Ω1 = Ω , with
respective (second order) thermal conductivity tensors denoted by K0, K1. We assume
constant volume fractions φ0 and φ1 of each phase, defined by φ0 = |Ω0|/|Ω| ∈ (0, 1)

and φ1 = 1 − φ0 = |Ω1|/|Ω| respectively, where | · | denotes a volume. The problem
governing the steady state of the temperature T ∈ H1(Ω) is given by the following
linear elliptic equation

−div (K(x)∇T ) = f in Ω (2.1)
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where we have denoted by f ∈ H−1(Ω) the internal source term and K is the thermal
conductivity of the composite defined by

K(x) =
{

K0(x) if x ∈ Ω0,

K1(x) if x ∈ Ω1.

The usual continuity conditions on the matrix-inclusions interface for temperature and
for the heat flux density are satisfied, i.e.:

T |∂Ω0 = T |∂Ω1 , K0∇T · ν0 = K1∇T · ν1 on ∂Ω0 ∩ ∂Ω1,

where νr is the outward normal unit vector to ∂Ωr , r = 0, 1 (then ν0 = −ν1). We
will assume that the two materials are TI, each with the x1x2 plane as the plane of
isotropy, so that we can write

K r
i j = κr (Θi j + αrδi3δ j3), r = 0, 1, (2.2)

where we have introduced αr as the measure of anisotropy, with αr = 1 for an isotropic
medium. Furthermore Θi j = δi j − δi3δ j3, where δi j is the second-order unit tensor.

It is usual to characterize a composite by its macroscopic effective properties, repre-
sented by a second order conductivity tensor K∗ giving the linear relationship between
the body averages of heat flux and the thermal gradient as follows

q̄ = K∗ē, e(x) = ∇T (x),

where ξ̄ = 1

|Ω|
∫

Ω

ξdx denotes the volume average of a given local field ξ . Following

Hill [11] the average energy density for the composite is defined by

W ∗(ē) = min
e∈E

1

|Ω|
∫

Ω

W (x, e) dx = 1

2
ē · q̄ = 1

2
ē · K∗ē. (2.3)

where E is the set of admissible temperature gradients given by

E = {e : there exists T ∈ H1(Ω) such that e = ∇T, T = T̄ on ∂Ω}.

We will need the following definitions

Definition 1 A composite is statistically homogeneous if pr the probability density of
finding an inclusion of type r centered at a point x, is a constant equal to pr = nr/|Ω|
with nr equal to the number of inclusions of type r .

Definition 2 A composite has ellipsoidal symmetry [6] for the distribution of the
inclusions if the conditional probability density function ps|r (x′, x) for finding an
inclusion of type s centered at x′ given that there exists an inclusion of type r centered
at point x, depends on x′′ = x′ − x only through the expression |A(rs)

d x′′|, for some

matrix A(rs)
d which defines an ellipsoid ω

(rs)
d = {z : |A(rs)

d z| < 1}.
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3 The single inclusion problem: the Hill tensor for TI isotropic materials

The so-called single inclusion problems are well known and utilized in micromechan-
ics because they allow one to derive very useful explicit expressions for the effective
properties of heterogeneous materials [12]. Consider the domain Ω infinitely extended
in R

3. Assuming the inclusion is an ellipsoidal inhomogeneity ω embedded in the host
matrix Ω (with thermal conductivity tensors K1 and K0 respectively), there exists the
fundamental property of uniformity of thermal gradients interior to the ellipsoid under
homogeneous far-field conditions (see [9,13]). An analogous property for the elastic-
ity setting was obtained by Eshelby [14] in the case of isotropic host phases. Effective
properties of inhomogeneous media can often be written rather conveniently in terms
of the Eshelby or Hill tensors as a result of these useful uniformity properties.

In this section, we derive the so-called Hill P-tensor associated with the single
inclusion problem by using a direct approach based on the variational formulation for
the transport equation. The Green tensor associated with the matrix phase is denoted
by G and satisfies

−div
[
K0∇G(x − y)

] = δ(x − y)

where G(x − y) is the Green function giving the temperature at point y generated by
a unit point heat source at point x ∈ Ω , where δ(z) the n-dimensional Dirac delta
function. The temperature distribution can be stated in integral form as follows

T (y) = T 0(y) −
∫

Ω

G(x − y) f (x)dx − (K1 − K0)

∫

ω

∇T (x)∇G(x − y)dx,

(3.4)

∀y ∈ Ω, where T 0 is the solution of (2.1) without any inclusion present (K0 = K1).
Neglecting the influence of the source term f (since this should not affect effec-
tive properties) and taking homogeneous temperature conditions in the far field, the
expression (3.4) becomes

eω = C ωē, C ω = [
I + P(K1 − K0)

]−1 (3.5)

where Ii j = δi j . This expression relates the uniform temperature gradient inside the
inclusion ω to the average temperature gradient inside the medium Ω through the
so-called concentration tensor C ω. In (3.5), P is known as the Hill-tensor (also called
the P-tensor) which following (3.4) is given by

Pi j = − ∂2

∂yi∂y j

∫

ω

G(x − y)dx, ∀y ∈ Ω. (3.6)

In particular, the components for the uniform Hill-tensor for an ellipsoidal inclusion
with semi-axes a j , j = 1, 2, 3 are given by see [15]
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Pi j = det(A)

4π

∫

S

�0
i j (ξ)

(ξ T (A)T Aξ)
3
2

d S (3.7)

where the superscript T denotes transpose, S denotes the surface of the unit sphere
and A and �0 are second order tensors with components

Ai j =
3∑

k=1

akδikδ jk and �0
i j (ξ) = ξiξ j

K 0
klξkξl

.

Although the expression (3.7) can be applied to more general geometries (ellipsoids
that are aligned or non-aligned with axes of anisotropy), for the sake of simplicity in
this work we will consider oblate or prolate spheroidal TI inclusions with semi-axes
a = a1 = a2 �= a3 inside a transversely isotropic matrix material, where the a3 semi-
axis is aligned with the x3 axis of transverse isotropy of the matrix phase. In this case,
the components of P are given by (see [15] for details)

Pi j = 1

κ0
(ϕΘi j + ϕ3δi3δ j3), ϕ = 1

2
(1 − α0ϕ3), ϕ3 = 1

α0
S (

ε√
α0

), (3.8)

where ε = a3/a is the aspect ratio of the spheroidal inclusion and the function S is
given by the expression

S (x) = 1

1 − x2 − x

1 − x2 ×

⎧
⎪⎪⎨

⎪⎪⎩

1

(x2 − 1)
1
2

arccosh(x), ∀x ∈ (1,+∞) (problate),

1

(1 − x2)
1
2

arccos(x), ∀x ∈ [0, 1) (oblate) .

Note that limits when ε → 0 and ε → ∞ correspond to particular cases of disc
or layered medium and a long fibre-reinforced medium respectively. The Hill-tensor
(3.8) in these cases simplify to the forms

Pfibre
i j = 1

2κ0
Θi j , P layered

i j = 1

κ0
δi3δ j3. (3.9)

If the heterogeneity has spherical shape (ε = 1), (3.8) leads to

Pi j = 1

κ0
(ϕΘi j + ϕ3δi3δ j3), ϕ = 1

2
(1 − α0ϕ3), ϕ3 = 1

α0
S (

1√
α

). (3.10)

For the particular case of spherical inclusions embedded inside an isotropic phase

(K0 = κ0 I , K1 = κ1 I ), the Hill-tensor simplifies to the form P = 1

3κ0
I .
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4 The Hashin–Shtrikman variational principle

Hashin and Shtrikman [4] derived a variational principle to bound the overall conduc-
tivity of a heterogeneous composite with statistically isotropic microstructure. It was
based on an alternative representation of the effective energy of the heterogeneous
media that makes use of a proper homogeneous comparison material (see also [5]).
An extension of the Hashin–Shtrikman formulation was studied by several authors,
additionally in the elasticity context (see [16]). In particular, Willis [6] developed
a variational structure to obtain these classical bounds on an anisotropic composite
comprising a matrix and n different types of inclusion phase. In this work, a polar-
ization field is introduced relative to the comparison material, and the distribution
tensor of inclusions is assumed the same as their shape. (given by integrals of the
associated two-point correlation functions). Later, Ponte Castañeda and Willis gen-
eralized the previous structure given by Willis [6] to the case where the influence of
the shape and the distribution of the different phases are taken into account indepen-
dently.

In this section, following Ponte Casteñeda and Willis’ [7] derivation of the varia-
tional principle for the elasticity context, we will derive explicit bounds for the effective
conductive energy of an anisotropic composite, first for the multiphase-case before
restricting attention to the two-phase scenario. In this formulation the hypotheses of
ellipsoidal symmetry for the distribution of the inclusions (possibly with a different
ellipsoidal shape to the shape of the inclusion) is assumed. Therefore, the explicit
expressions (3.8–3.10) for the P-tensor can be used, thanks to the linearity of the
problem, leading to explicit bounds on the effective conductivity K∗.

Assume at first that the composite occupies the domain Ω comprising n different
types of inclusion phases that could be selected independently of their spatial distrib-
ution depending on two parameters ε, ρ > 0 respectively. These parameters are the
aspect ratio of the spheroidal inclusion (ε) and the statistics associated with the spher-
oidal distribution function (ρ). We denote the conductivity tensor of the r th phase by
Kr , r = 1, . . . , n and by K0 the conductivity of the matrix within which the inclusion
phases are embedded. Ωr represents the total domain of the r th phase, i.e. it is the
collection of nr ellipsoidal inclusions (each aligned and having the shape defined by a
domain ωr ) with total volume fraction equal to φr = |Ωr |/|Ω|. The volume fraction
of the host phase is therefore φ0 = 1 −∑n

r=1 φr . Under these conditions, we have the
following theorem [7]

Theorem 1 Let Kc be the uniform conductivity tensor of a homogeneous comparison
material. Assume that the composite is statistically homogeneous and the distribution
of inclusion phases is defined by spheroidal symmetry. Then, given ρ, ε > 0 its
effective energy W ∗ satisfies the inequality

W ∗(ē) ≥ (≤)
1

2
ē · Kcē + 1

2
ē · τ̄ ∗ (4.11)

whenever Kc ≤ min0≤r≤n Kr (≥ max0≤r≤n Kr ), where τ̄ ∗ = ∑n
k=0 φkτ

∗
k is the

average of the optimal polarizations τ ∗
k , which satisfy the relations
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(K0 − Kc)−1τ ∗
0 − 1

φ0

n∑

k=1

n∑

�=1

M(k�)(τ ∗
� − τ ∗

0) = ē

(Kk − Kc)−1τ ∗
k + 1

φk

n∑

�=1

M(k�)(τ ∗
� − τ ∗

0) = ē, k = 1, . . . , n.

(4.12)

Max and min hold componentwise. The parameters M(k�) in (4.12) depend on K0 and
on the microstructure. They can be shown to be symmetric and to have the form

M(k�) = φ�(Pε,k
s − φkPρ,(k�)

d ), k, � = 1, . . . , n. (4.13)

Here, Pε,k
s and Pρ,(k�)

d denote the uniform Hill-tensors given by (3.7) associated with
the aspect ratio ε of the inclusion in the kth phase and with the aspect ratio ρ associated
with the spheroidal distribution and concerning the interaction between the kth and
�th phases.

Proof Denote by W c the energy function associated with the comparison material
with uniform conductivity tensor Kc and assume that Kc ≤ minr=1,...,n{Kr } in the
sense that e · (Kc − Kr ) · e ≤ 0, r = 1, 2, . . . n, ∀e ∈ E . Given ρ, ε > 0, the
Legendre-Fenchel transform for the conductivity problem is defined as

(W − W c)o(x, τ ) = max
e∈E

{τ · e − (W (x, e) − W c(e))}. (4.14)

From (2.3), Eq. (4.14) gives

W ∗(ē) ≥ inf
e

∫

Ω

{τ · e + W c(e) − (W − W c)o(τ , x)}dx. (4.15)

For any τ , the infimum is attained when e = ē − Γ τ . Γ denotes the linear integral
operator

(
Γ τ

)
(x) =

∫

Ω

Γ c(x − s)(τ (s) − τ̄ )ds, (4.16)

where τ̄ represent the mean value of τ and whose kernel is related to the Green function
Gc for the domain Ω with conductivity modulus tensor Kc given by (see [6])

Γ c
i j (x) = −∂2Gc(x)

∂xi∂x j
= − 1

8π2

∫

|ζ |=1
Hc(ζ )δ′′(ζx)d S,

with Hc(ζ ) a tensor with components Hc
i j (ζ ) = Bc(ξ)ζiζ j and Bc the inverse of the

tensor C with components Ckl(ζ ) = Kcζkζl . Selecting a piecewise constant polar-
ization field τ (x) = ∑n

r=0 χr (x)τ r
(
then τ̄ = ∑n

r=0 φrτ r
)
, following (4.16) and

employing the fact that the average of Γ cτ is equal to zero, (4.15) gives
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W ∗(ē) ≥ ē + 1

2
ē · Kcē − 1

2

n∑

r=1

φrτ
r [(Kr − Kc)−1 · τ r ]

−1

2

n∑

r=1

n∑

s=1

(τ r − τ 1) · M(rs)(τ s − τ 1)

(4.17)

where

M(rs) =
∫

Ω

∫

Ω

χr (x)[χ s(x′) − φs]Γ c(x − x′) dxdx′ r, s = 0, 1, . . . , n.(4.18)

Inequality (4.17) is extremized with respect to the polarizations τ r , to obtain (4.11),
where τ̄ ∗ = ∑n

k=0 φkτ
∗
k is the average of the so-called optimal polarizations τ ∗

k which
satisfy the relationships given by (4.12).

Following [7], in order to simplify the above expression for the microstructure
tensor given by (4.18), we make use of the hypotheses of statistical homogeneity and
spheroidal symmetry of the composite. Namely, if the inclusions are assumed to be
spheroidally distributed (but maybe with a different ellipsoid from one that defines
the inclusion shapes), the tensor (4.18) can be expressed as (4.13). In (4.13) Pε,k

s

and Pρ,(k,�)
d are uniform P-tensors given by (3.7) with ω replaced by the r th phase

ellipsoidal inclusion ωr and by the ellipsoid ω(k�) given by Definition 2 respectively,
and whose shapes depend on ε and ρ. ��
Remark 1 Recall that the subscripts s and d refer to the shape and distribution of
inclusions depending on ε and ρ respectively. By definition, we have Pρ,(k�)

d = Pρ,(�k)
d ,

and for conciseness we will write Pρ,k
d , to denote Pρ,(kk)

d , k = 0, . . . , n.

Corollary 1 By linearity, using (2.3), the following expression for the optimal bounds
is derived from (4.11)

K∗ ≥ (≤) Kc + τ̄ ∗ · ē−1 := KB (4.19)

where KB = K+ for an upper bound and KB = K− for a lower bound.

Corollary 2 Taking the linear comparison material with conductive modulus tensor
as Kc = max0≤r≤n Kr (resp. Kc = min0≤r≤n Kr ), meaning that we choose the
maximal (resp. minimal) value of each component in the tensor, by (4.19) we find that
KB = K+ (resp. KB = K−) is an upper (resp. lower) bound on the effective modulus
tensor. The Hashin–Shtrikman bounds are thus

K− ≤ K∗ ≤ K+.

Note that K+ and K− are obtained when the comparison material are the highest
and the lowest conducting phase respectively. If the comparison material is neither
the highest nor the lowest conducting phase, then KB is only an approximation to the
effective properties and then, in the following it will be denoted by K ∗.
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4.1 The Hashin–Strikman bounds for a two-phase composite

In this work we shall restrict attention to two-phase particulate media so that there
is a single inclusion phase. For simplicity, we suppose that the inclusion phase is a
distribution of (possibly different sized) aligned spheroids but where each spheroid
has the same aspect ratio ε = a3/a and where the long/short axis (same direction as
the semi-axis a3 of the spheroid) is aligned with x3. Note that this spheroidal shape
is taken into account thanks to the P-tensor Pε

s . Its distribution is accounted for by
virtue of the P-tensor Pρ

d which we shall also consider to be governed by spheroidal
statistics, of aspect ratio ρ.

Various alternative expressions for the HS bounds can be obtained. Let us first
consider the case when the comparison phase can be chosen as either the host or
inclusion phase. Note that this may not always be possible however.

Comparison phase can be identified as either host or inclusion phase

Let us first suppose that we are able to identify Kc = K0 (then τ 0 = 0) and then
Kc = K1 (thus τ 1 = 0). Then, from (4.11) and (4.12) the following expressions
follow respectively:

KB0 = K0 + φ1

(
(K1 − K0)−1 + Pε

s − φ1Pρ
d

)−1
, (4.20)

KB1 = K1 + φ0

(
(K0 − K1)−1 + Qε

s − φ1Qρ
d

)−1
, (4.21)

where

Qε
s = φ1

φ0
Pε

s , Qρ
d = φ1

φ0
Pρ

d .

From (4.20 and 4.21) we easily derive that if the matrix is the more insulating phase
(i.e. K0 ≤ K1) we have K− = KB0 and K+ = KB1 . On the contrary, if we can identify
the matrix phase as the highest conductive material (i.e. K1 ≤ K0), then K− = KB1

and K+ = KB0 .

Remark 2 Note that expanding expression (4.20) [or analogously (4.21)] with respect
to the volume fraction, we derive the following approximation for KB0 (and therefore
for K∗)

K ∗ = K0 + [(K1 − K0)−1 + Pε
s ]−1φ1

+
(
[(K1 − K0)−1 + Pε

s ]−1φ1

)
· Pρ

d ·
(
[(K1 − K0)−1 + Pε

s ]−1φ1

)

+O((φ1)
3). (4.22)
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From (4.22), it follows that the shape of the inclusions affect K ∗ to first order through
the volume fraction, where as the corresponding to their symmetry distribution affect
to second order.

Comparison material cannot be identified as either host or inclusion phase

It may not always be the case that the comparison material can be identified as exactly
one of the inclusion phases. In this case both polarization fields have non-zero com-
ponents and it is necessary to determine general bounds in terms of the comparison
modulus tensor by solving the linear system

[
(K0 − Kc)−1 + (Qε

s − φ1Qρ
d )

]
φ0τ

∗
0 − (Pε

s − φ1Pρ
d )φ1τ

∗
1 = φ0ē,

−(Qε
s − φ1Qρ

d )φ0τ
∗
0 +

[
(K1 − Kc)−1 + (Pε

s − φ1Pρ
d )

]
φ1τ

∗
1 = φ1ē.

which we can write as

A0Qφ0τ
∗
0 − BPφ1τ

∗
1 = φ0ē

−BQφ0τ
∗
0 + A1Pφ1τ

∗
1 = φ1ē

so that we can approximate the effective conductive tensor by K ∗ equal to KB in
(4.19) and τ ∗ given by

τ ∗ =
(
[B−1

P A0Q − A−1
1P BQ]−1[φ0B−1

P + φ1A−1
1P ]

+ [B−1
Q A1P − A−1

0QBP ]−1[φ0A−1
0Q + φ1B−1

Q ]
)

ē.

Inclusions have the same shape as their distribution

When all the inclusions have the same shape, so that Pε,r
s = Pε

s , r = 1, . . . , n, and the
distribution of inclusions has the same symmetry as the inclusions (Pρ

d = Pε
d = Pε

s
= Pε), one can write down a the following clean form involving the comparison phase.

KB =
[
φ0(δ + (K0 − Kc)Pε)−1 + φ1(δ + (K1 − Kc)Pε)−1

]−1

[
φ0(δ + (K0 − Kc)Pε)−1K0 + φ1(δ + (K1 − Kc)Pε)−1K1

]

This also generalizes to the multi-phase expression given by Willis [6] for composites
with aligned ellipsoidal inclusions and ellipsoidal symmetry

KB =
[

n∑

r=0

φr
[
δ + (Kr − Kc)Pε

]−1

]−1 n∑

r=0

φr [δ + (Kr − Kc)Pε]−1Kr .
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Fig. 1 Spheroidal distributions
(aspect ratio ρ) containing
spheroidal inclusions (aspect
ratio ε). The vertical axis here is
the axis of symmetry of TI and
of the inclusions and
distributions

ρ ρ

4.2 Distribution P-tensor

In order to avoid particles overlapping, let us now consider some aspects regarding the
relation between the aspect ratio ρ of the spheroid associated with the P-tensor Pρ

d ,
the aspect ratio ε of the inclusions and that of Pε

d and the volume fraction φ1 of the
inclusion phase. Let us refer to Fig. 1 where we note that the distribution spheroid is
a security spheroid, containing a single spheroidal inclusion, which is not intersected
by any other security spheroid.

Assuming that Pε
s and Pρ

d are given, this construction of the composite means that
there exists a maximal volume fraction associated with how much of the inclusion can
fit into the security spheroid. This depends on whether ε > ρ or ε < ρ (see Fig. 1).
Simple calculations show that when ε > ρ we have 0 ≤ φ1 ≤ ρ2/ε2, whereas if
ε < ρ we have 0 ≤ φ1 ≤ ε/ρ.

Alternatively, suppose that the inclusion aspect ratio ε is fixed in addition to the
volume fraction. This then gives a condition on the maximum ρ permitted. In particular
when ρ < ε we can determine that 0 ≤ ρ ≤ ε

√
φ1 ≤ ε whereas when ρ > ε we have

ε ≤ ρ ≤ ε/φ1. A special case is when inclusions are spherical, so that ε = 1.

5 Construction of the bounds for transversely isotropic tensors

The focus of the present article is to describe a direct manner for the construction of the
HS bounds for TI materials whose phases are also TI with x3 as the axis of transverse
symmetry (so that the x1x2 plane is the plane of isotropy). In Sect. 4.1 we have spoken
of an explicit general construction of the HS bounds that take into account not only the
inclusion shapes but also their spatial distribution, in terms of the conductive modulus
tensors Kr and the P-tensors Pρ

d and Pε
s However the implementation can cause great

difficulty, particularly for anisotropic phases. To simplify this issue, we shall proceed
as follows. First, we observe that a second order TI tensor can be defined with respect
to the tensor basis set

{I (1)
i j , I (2)

i j }, where I 1
i j = Θi j , I 2

i j = δi j − I 1
i j . (5.23)

Hence, given (5.23) in order to define a TI conductive tensor K r
i j given by (2.2), the

short-hand notation Kr = (κr , κrαr ), r = 0, 1, will be adopted. Observe that the
contraction between the the elements of the basis tensors defined in (5.23), is given
easily by
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I (1)I (1) = I (1), I (1)I (2) = I (2)I (1) = 0, I (2)I (2) = I (2). (5.24)

This permits us to define some basic operations over the set of second-order tensors
with coefficients in R

2.

Definition 3 Given two TI tensors K 1
i j and K 2

i j defined in short-hand notation by

K1 = (κ1, κ1α1) and K2 = (κ2, κ2α2), using the contractions (5.24), we define the
operations of addition A[H1, H2] : R

2 × R
2 → R

2, double contraction C[H1, H2] :
R

2 × R
2 → R

2 and inversion I[H1] : R
2 → R

2 in the following way

A[H1, H2] := (κ1 + κ2, κ1α1 + κ2α2), C[H1, H2] := (κ1κ2, κ1κ2α1α2),

I[H1] := (1/κ1, 1/(κ1α1)). (5.25)

Therefore, given the explicit expressions for the HS bounds derived in Sect. 4, one
can straightforwardly construct them using (5.25) and introducing the tensors coded
as functions with arguments as 2-vectors.

6 Implementation and examples

In this section we illustrate the above scheme for a heterogeneous media contai-
ning aligned spheroidal inclusions of alumina embedded in a host matrix made up
of aluminum. Aluminum (Al) is probably the most common matrix for metal-host
composites for several reasons. It is very light, which makes it of great interest for
the aerospace industry and other applications such as laptop computers. Its low cost
due and low melting temperature also makes composite fabrication very economical.
However, the high heat dissipation of this material is a serious problem in applications
that use this material as a thermal conductor. An effective way to resolve this problem
is the addition of a low filler to form a metal matrix composite. The most common
filler used is silicon carbide (SiC) inclusions due to its low cost and low coefficient
of thermal expansion (CTE=3.7 10−6/oC ). In this process [17], SiC reacts with alu-
minum through the chemical reaction 3SiC + 4Al → 3Si + Al4C3 and the produced
silicon (Si) weakens the interface between the filler and the host of the composite.
Alternative, alumina (Al2O3) and aluminium nitride (AlN) are fillers that do not react
with aluminium. We refer to [18] for more details related to the chemical reaction
between these materials. Particularly, particles of alumina (Al2O3) are the second
most popular type that are employed. Therefore, in this section we illustrate the above
bounding scheme for a heterogeneous media containing aligned spheroidal inclusions
of alumina embedded in a host matrix made up of aluminum. According to [17] and
[18] the numerical values of thermal conductivities for aluminum and alumina are,
respectively κ0 = 247 W/K m (CTE= 23 10−6/oC) and κ1 = 20 W/K m (CTE= 7
10−6/oC). For simplicity we compute only the transversal effective component κ∗ of
the composite. The HS bounds are plotted as a function of the volume fraction φ = φ1
of the alumina inclusion phase.

In Fig. 2 we suppose that ε = ρ (then Ps = Pd ). It shows on the left bounds
associated with spherical alumina inclusions uniformly distributed with spherical
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Fig. 2 Pε
s = Pρ

d : All the alumina inclusions have the same shape and are distributed with the same
spheroidal shape. On the left we consider spheres and spherical statistics. The HS bounds (solid) and
Wiener bounds (dashed) are plotted. On the right spheroidal inclusions and statistics are chosen with ε = 1
(solid), ε = 0.1 (dashed), ε → ∞ (dotted) and ε → 0 (dot-dashed)
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5050

150150

250250

Fig. 3 Pε
s �= Pρ

d . On the left, we take spherical alumina inclusions (ε = 1) and consider both oblate with

ρ = √
φ (dot-dash lines) and ρ = 1

φ
for the prolate (dashed lines) distributions. On the right, we consider

the effect when the inclusion becomes a spheroid with (oblate and prolate) aspect ratio ε = φ, 1/
√

φ

(dot-dash and dashed lines resp.) and the distribution is spherical (ρ = 1)

symmetry in the aluminum host phase (ρ = ε = 1). Therefore the effective material
is isotropic. We plot the Wiener bounds (dashed lines) on these effective properties
together with the HS bounds (solid lines), noting the improvement of the HS bounds
in particular. On the right, we consider the case of spheroidal alumina inclusions
with general aspect ratio ε = 1 (solid line), ε = 0.1 (dashed lines) distributed with
spheroidal symmetry. So that the effective material is TI. Limiting cases ε → ∞
(dotted line) and ε → 0 (dot-dashed line) corresponding to long fibre-reinforced and
layered materials are also plotted.

Analogously to the elasticity context, the bounds coincide in the (layered) limit
when ε → 0, as can also be observed in the plots in Figs. 3 and 4. It is also seen that
the transverse modulus is not affected greatly by increasing ε from unity. In fact, the
fibres do not have to be particularly long before they reach this limit: ε = O(10) is
sufficient for example.

In Fig. 3 we consider the case when the distribution spheroid has different shape
to that of the inclusion shape (Pε

s �= Pρ
d ). On the left, we take spherical alumina

inclusions (ε = 1) and consider both oblate with ρ = √
φ (dot-dash lines) and ρ = 1

φ
for the prolate (dashed lines) distributions. On the right, we consider the effect when
the inclusion becomes a spheroid with (oblate and prolate) aspect ratio ε = φ, 1/

√
φ

(dot-dash and dashed lines resp.) and the distribution is spherical (ρ = 1). It is worth
observing the fact that according to (4.22), the effect of the aspect ratio of the inclusions
on the effective properties of the material is larger that the corresponding one due to the
distribution of spherical inclusions. Of course, each point on these curves represents
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Fig. 4 Effect of the inclusion aspect ratio on the transverse effective conductivity. On the left: Pε
s = Pρ

d .

On the right: Pε
s �= Pρ

d

a different type of composite in the sense that the inclusion and the distribution has
different spheroidal statistics. Wiener bounds (solid lines) are also represented. On
the right of Fig. 4, we plot the influence of spheroidal inclusions with aspect ratio
ε, possibly distinct from the aspect ratio ρ of the spheroidal distribution for a fixed
φ = 0.3. We plot two set of curves, one set corresponding to a spheroidal distribution
with aspect ratio ρ = ε

√
0.3 (solid lines) and another set corresponding to the same

aspect ratio as that of the inclusion ρ = ε (dashed lines). Note that the plot has log-
linear scaling and as should be expected the most significant effect is felt away from
the limiting cases when ε → 0 and ε → ∞ corresponding to the layer and long fibre
limits.

7 Conclusions

We have presented a straightforward mechanism for the construction of the HS bounds
for TI composites focusing in particular on the two-phase case in the conductivity set-
ting. The scheme takes into account microstructural information of the media through
the shape and distribution of the inclusions. The explicit form of the Hill tensors for
spheroidal inclusions, which is often derived from its integral form- and the definition
of an appropriate TI tensor basis set is used. The associated vector notation described
in Sect. 5 leads to an clear way to develop a mathematical theory that generalizes
some existing formulas in the literature. We implement different constructions for
a specific composite material, showing the improvement of the HS bounds over the
Wiener bounds. Analogous schemes may be developed for several phases and mate-
rials of arbitrary anisotropy, although in general the corresponding Green tensor, and
therefore the Hill tensor cannot be derived analytically. The mechanism proposed can
be extended to the more general elasticity context by deriving the corresponding Hill
tensors and the appropriate basis tensor. In this sense, future work will try to consider
the construction of HS bounds for multi-phase composites, taking into account enough
microstructural information to derive accurate property predictions.
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